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INTRODUCTION 

  
Geologic units have an inherent conductivity and 
chargeability that can be diagnostic in mineral 
exploration. Resistivity is the inverse of conductivity and 
both terms are used in this paper. Geophysical methods 
that are sensitive to conductivity and chargeability 
contrasts can be used to detect and map these contrasts 
and the results interpreted to advance problems in 
mineral exploration. One such method is the DC 
resistivity and induced polarization (DC/IP) survey. 
DC/IP surveys have been used to delineate many types of 
mineralization including: porphyry copper, vein-hosted 
gold, and uranium. 
 
A typical DC/IP survey consists of two current electrodes 
and two potential electrodes organised in a linear array. 
The voltage is measured at the potential electrodes during 
the on-time portion of the current cycle to determine 
resistivity while IP measurements are made during the 
off-time portion. Traditionally, the electrodes are 
positioned along a line and multiple co-linear lines make 
up a survey block. More recently, 3D DC/IP surveys are 
increasingly gaining favour over the traditional 2D 
approaches. The 3D surveys provide large amounts of 
information about the subsurface, are not limited to 
parallel survey lines, and may be more effective in 
complex geologic settings where there is no clear 
geologic strike to allow optimal orientation of the 2D 
arrays. However, the relatively complex electrode 
distributions and the large volume of data acquired in 3D 

surveys make visualization of results relatively difficult. 
In traditional 2D surveys, the apparent resistivity and 
chargeability results are presented as 2D pseudo-sections 
and the data then inverted to generate resistivity and 
chargeability earth models for interpretation. The 
inversion of 3D surveys is complicated by the 
requirement of large meshes to accommodate the volume 
and density of data acquired. As a result, the computation 
time can become very significant and potentially 
inhibitive. 
 
There is merit to reducing the complexity of 3D DC/IP 
datasets prior to inversion to test inversion parameters 
efficiently, to ensure the data quality control is 
satisfactory, and to obtain a model in a reasonable 
amount of time. Large 3D datasets may also contain 
highly redundant information and inputting this to the 
inversion process may not add to the accuracy of the 
recovered model. 
 
Inversions perform best when the data has approximately 
uniform coverage (all parts of the model are represented 
approximately uniformly in the dataset). Non-uniform 
coverage may result from a survey design that includes 
directional bias or oversampling in one region and under-
sampling in another. The acquisition of data using a 
survey design with directional bias and under-sampling 
compromises the value of the dataset. The acquisition of 
redundant data through over-sampling may not similarly 
compromise the value of the dataset but rather results in 
a waste of resources in both the field and in the office 
driving up the acquisition and processing costs.  
 
In order to address the latter problem (to combat the 
issues presented when inverting large 3D DC/IP 
datasets), we propose a sensitivity-based data reduction 
(SBDR) algorithm that systematically reduces data 
volumes while minimizing information loss. In this 
paper, we present the algorithm, followed by synthetic 
and field examples. 
 
 

METHOD AND RESULTS 
 
Consider a uniform half-space earth with a conductivity 
(𝜎). A current (𝐼) is injected into the homogeneous earth 
and the potential (𝑉) is measured a distance (𝑟) away 
from the current injection. The potential is then given by 
the equation 

𝑉ሺ𝑟ሻ ൎ
1
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SUMMARY 
 
In this paper, we present an algorithm based on the 
sensitivity of the data to the model space to reduce 
the large amount of data commonly collected during 
3D DC/IP surveys to only those most relevant and 
important to the model space. The sensitivity-based 
data reduction (SBDR) algorithm is demonstrated 
using both synthetic and field data examples. The 
results indicate that the SBDR recovered models are 
valid solutions to the full inversion problem but 
require a fraction of the computation time and 
resources, providing a geologic solution in a much 
shorter time than required to solve the full inversion 
problem. 
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A small conductivity perturbation (Δ𝜎) is added to the 
uniform halfspace, as shown in Figure 1, which gives rise 
to a small perturbation in the measured potential. To 
account for this perturbation, a second term is added to 
Equation (1): 
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Figure 1: A current (𝐼) is injected into a uniform halfspace 
earth (𝜎) with a small conductivity perturbation (𝛥𝜎). The 

potential (𝑉) is measured a distance (𝑟) away from the current 
injection. 

The second term in Equation (2) defines the sensitivity of 
the measured potential to the perturbation: 
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We can then define the relative sensitivity (𝐽) to be the 
sensitivity from Equation (3) normalized by the potential 
measurement: 
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The resistivity model space is discretized into a voxel 
mesh prior to inverting the data. To apply the SBDR 
algorithm, the relative sensitivity from Equation (4) is 
calculated at each voxel in the model for every 
measurement in the survey. The relative sensitivity 
values from each voxel are compared and only those data 
points that produce a large relative sensitivity are kept. 
Iterating over this for each voxel creates the reduced 
dataset based on the relative sensitivity. 
 
This method separates data that have larger influence on 
the model, termed “relatively important” data, from those 
that have a lesser impact. The size of the reduced data set 
is controlled by the threshold on the relative sensitivity 
measured at each voxel. The size and distribution of the 
voxels can be used to control the degree of data reduction. 
A natural choice for the voxel size might be the desired 
conductivity resolution or a voxel size that is appropriate 
for the survey parameters.  
 

An additional feature of this algorithm is that it can be 
used to specifically focus on a subdomain of interest. The 
numerical implementation can incorporate more 
complexity than a homogeneous model space; indeed, 
any a priori physical property information (i.e., a 
conductive overburden) may be included.  
 
While the idea is quite simple, we have found it to be 
extremely effective, particularly in situations where 
alternative data reduction methods (i.e., subsampling) 
cannot be used (as is the case for 3D DC/IP or EM 
problems).  
 

SYNTHETIC EXAMPLE 
 

The SBDR algorithm is illustrated using a synthetic 
example where two 200 Ω-m prisms are buried in a 1,000 
Ω-m background. A multi-line east-west oriented 2D 
dipole-dipole survey is collected at the surface. The 
electrodes have an a-spacing of 25 m and voltage data are 
measured at n=1 to 12, providing a relatively dense 
dataset. Figure 2 shows the electrode layout and the two 
conductive prisms. 
 
The data were forward modelled and the full dataset 
inverted. We then applied the SBDR algorithm to select 
the “relatively important” data for the forward modelled 
dataset, resulting in a 50% reduction in the size of the 
dataset. These relatively important data were then 
inverted again using the same parameters as the inversion 
of the full dataset. Figure 3 compares the results between 
the full and reduced datasets, along with the data 
distribution. The two conductive prisms are nicely 
recovered in the correct locations in each inversion. 
 
As mentioned above, the SBDR algorithm can also be 
used to focus the data on a certain region of the model. 
Figure 4 shows the results for a model sub-domain 
outlined in white (i.e., a possible target volume of 
exploration interest). The SBDR algorithm was used to 
only retain those data that have “relative importance” for 
the sub-domain. The model shows that the prism of 
interest is recovered while other features are not. 
 
 

 
Figure 2: (top) A multi-line east-west oriented 2D dipole-

dipole survey. Transmitters and receivers are indicated in red 
and blue, respectively. (bottom) The synthetic model consists 

of two conductive prisms buried in a uniform background. 
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Figure 3: (top) The data are plotted as a pseudo-section with 
points, showing the full distribution, over a slice through the 
recovered model using the full dataset. (bottom) The points 

show the distribution of the “relatively important” data as a 
pseudo-section over a slice through the recovered model using 

the reduced dataset. In both panels, the true locations of the 
prisms are outlined in black. Blue colours indicate resistive 

areas while red colours indicate conductive areas. 

 
Figure 4: The SBDR algorithm is used to focus the data onto a 

sub-domain (indicated in white). The recovered model only 
produces the conductive prism inside the sub-domain. The true 
locations of the two prisms are outlined in black. Blue colours 
indicate resistive areas while red colours indicate conductive 

areas. 

 
FIELD EXAMPLE 

 
We showcase the SBDR algorithm on a field example. 
The DC/IP survey was collected over a known uranium 
occurrence in the Athabasca Basin of northern 
Saskatchewan, Canada, to define variations in resistivity 
correlated with mineralisation. The highly heterogeneous 
nature of the geology merits a 3D approach for the DC/IP 
survey. 
 
The dataset consisted of approximately 470,000 pole-
dipole voltage measurements, collected in a 3D 
orientation (Figure 5). Given the survey parameters, the 
inversion mesh would require 1.2 million voxels, which, 
combined with half a million measurements, was not 
feasible given our computation resources. In order to 
invert the full dataset, the model space had to be divided 
into 3 overlapping tiles. This method still took an 
unreasonable computation time as well as inducing some 
artefacts where the tiles overlap.  
 
Because 3D DC/IP surveys could have electrodes that are 
far apart but still produce significant data, a tiled 
approach may not work for every type of survey without 
blindly removing data that extends outside each tile. 
 

The SBDR algorithm was applied to the field dataset with 
two goals in mind: (1) invert the data on a single mesh, 
and (2) invert the data in a reasonable length of time. The 
algorithm reduced the full dataset of 470,000 
measurements to approximately 70,000 “relatively 
important” data which could be significantly more easily 
be inverted on a mesh containing 1.1 million voxels. 
 
The recovered model using the reduced dataset (shown in 
Figure 6) not only fit the observed data (reaching a 
reduced chi-square value of 1 using a data uncertainty of 
5% plus a noise floor of 3 mV) but was consistent with 
the expected geologic structures and previously 
recovered conductivity models using other methods. 
 
Our final question was if the SBDR recovered model was 
also an acceptable solution for the full dataset. This was 
tested by forward modelling the SBDR recovered model 
using the full dataset locations and comparing this 
predicted dataset with the full observed dataset. The 
reduced chi-square fit between the full observed and 
predicted data was 0.8, which is a reasonable data fit. 
This indicates that the SBDR recovered model is a valid 
solution to the full 3D inversion problem in this case. 
 
Using SBDR to reduce the dataset allowed us to recover 
a conductivity model in 10 hours, which is a tremendous 
improvement in computational efficiency compared with 
the tiled inversion of the full dataset, which took 
approximately 50 hours. 
 

 
Figure 5: Distribution of electrodes in the 3D DC/IP survey. 
Transmitters and receivers are shown as red and blue dots, 

respectively. 

 
CONCLUSIONS 

 
In this paper, we presented a sensitivity-based data 
reduction algorithm to significantly reduce the number of 
DC/IP data required to generate a geologically 
reasonable inversion model from 2D synthetic and 3D 
field datasets. The SBDR approach was used to calculate 
those data which are “relatively important” in each 
dataset. The synthetic example showed that using the 



Processing Large 3D DC/IP Surveys                                                                                          Devriese, Ellis and Witherly
   

AEGC 2019: From Data to Discovery – Perth, Australia   4 
 

reduced data had no significant impact on the final model 
outcome.  
 

 

 
Figure 6: Recovered conductivity model using the 70,000 

"relatively important" data at (top) the surface and (bottom) 
~300 m constant elevation slice. Blue colours indicate 

resistive areas while red colours indicate conductive areas. 

 
The use of the algorithm on the field dataset allowed us 
to find a solution in 10 hours. A direct inversion of the 
full dataset would have required at least several days 

using equivalent computer resources. The SBDR 
algorithm allowed us to dramatically reduce the size of 
the dataset and consequently reduce the time and cost of 
the inversion problem. The results showed that the SBDR  
recovered model for the field example was also a valid 
solution to the full inversion problem. 
 
By saving both time and computation costs, the user can 
now practically run more inversion trials, as very rarely 
does the first inversion produce the final model to be 
interpreted. Several trials allow the user to determine the 
best inversion parameters as well as data uncertainty 
assignments, and ultimately come up with the best 
possible solution for a geologic problem. The SBDR 
algorithm aids in allowing that process to occur in a 
reasonable time-frame for a mineral exploration 
program.  
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